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We propose a new numerical method for modeling motion of open curves in two dimen-
sions and open surfaces in three dimensions. Following the grid based particle method we
proposed in [S. Leung, H.K. Zhao, A grid based particle method for moving interface prob-
lems. J. Comput. Phys. 228 (2009) 2993–3024], we represent the open curve or the open
surface by meshless Lagrangian particles sampled according to an underlying fixed Euleri-
an mesh. The underlying grid is used to provide a quasi-uniform sampling and neighboring
information for meshless particles. The key idea in the current paper is to represent and to
track end-points of the open curve and boundary-points of the open surface explicitly and
consistently with interior particles. We apply our algorithms to several applications includ-
ing spiral crystal growth modeling and image segmentation using active contours.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In a recent work [17], we proposed a novel grid based particle method to represent and track interface motion. In our
approach the interface is represented by meshless, i.e., no triangulation or parametrization, Lagrangian particles which
are associated to an underlying uniform or an adaptive Eulerian mesh. This results in a quasi-uniform sampling of the inter-
face. The motion of the interface is tracked by these particles. The interface may be reconstructed locally and also be resam-
pled during the evolution. The underlying mesh provides local neighboring information for the meshless particles which is
used for local reconstruction by least square fitting in a local coordinate system. Adaptive local sampling of the interface can
be easily achieved by local adaptivity in the underlying mesh. Moreover, the meshless representation allows one to control
topological changes easily by using both Lagrangian and Eulerian information available. We have successfully applied this
technique to different interface motions such as the motion by an external velocity field and various geometric motions
to demonstrate the efficiency, the accuracy and also the flexibility of the approach.

The goal of this paper is to generalize the techniques in [17] to handle motions of an open curve in 2D or an open surface
in 3D. The key point is to explicitly track the boundary (end-points of the open curve and a closed boundary curve of the open
surface) and then incorporate this boundary condition consistently and accurately to confine the sampling and local recon-
struction of interior region of open curves and surfaces.

In many applications, it is useful to model slender objects as open curves and to model thin sheets as open surfaces.
For explicit Lagrangian tracking methods, open curves and surfaces do not pose extra challenges besides those usual dif-
ficulties for tracking methods in dealing with general moving interfaces, such as topological changes. For implicit Eulerian
. All rights reserved.
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methods, there is no natural way to represent open curves and open surfaces since there is no distinction of interior and
exterior regions. Recently, a few approaches have been proposed for dealing with open curves and surfaces based on the
level set method [21]. One approach was the work of [23] for modeling spiral crystal growth. The author used the inter-
section of two level set functions to represent the codimension-two boundary of the open curve or surface. The curve or
surface of interest was implicitly defined as the zero level set of one signed distance function at which another one was
positive, i.e. S ¼ fx : /ðxÞ ¼ 0 and wðxÞ > 0g. However, one has to define velocities for not only the level set function /
which represented the curve or surface of interest, but also the level set functions w which was used solely to define
the codimension-two boundary. Moreover, the method proposed in [23] worked only for fixed-end curve and it is not
clear how to define the velocity for w so that the evolution of the boundary satisfied a given motion law. A generalization
to this approach was proposed in [24] for constructing open surfaces from point cloud data. The method incorporated the
method proposed in [5,9] to allow motion of the boundary. Computationally, all these methods were not efficient since
they not only solved one partial differential equation (PDE) for the level set function to get the implicit representation of
the open curve or surface, but the number of PDEs, i.e. the number of the level set functions, equals to the codimension of
the object.

Directly applying the level set method, [2] in the content of image analysis implicitly represented the open curves using
the centerline of a level set function, i.e. the curve of interest is the zero level set. Numerically this is challenging since the
level set function gives almost no zero value. To overcome this issue of numerical difficulties, the authors considered the l-
level set instead. But then the curve can never be exactly recovered and there is always an OðlÞ smoothed zone near the
interface.

Another method to modeling motion of open curves and surfaces is the vector distance function method [13] which ex-
tends the signed distance function of the level set method. The vector distance function was defined as /ðxÞ ¼ x� y with y
the closest point from x to the interface. Therefore, this vector valued function embedded not only the distance and the in-
side or outside information, but also the normal vector. Unfortunately, this representation required solving the same number
of PDE’s as the dimension of the space where the object is living, independent of the codimension of the object. In particular,
the method required solving three PDEs for modeling curves or surfaces which are open or closed in R3.

Similar to our representation in [17], the vector level set method [25] modeled propagating crack using also closest points
from an underlying fixed mesh. However, their motion law was imposed only at the tip of an open curve. No motion or
reconstruction was considered elsewhere.

There are a few nice properties of our approach to open curves and surfaces. First, the end-points/boundary-points of
the open curve/surface are accurately and explicitly tracked like usual tracking methods. This is important for many phys-
ical applications. Moreover, the grid based particle method can naturally handle both the viscosity solution and the mul-
tivalued solution using meshless Lagrangian particles with an underlying Eulerian mesh. This gives a flexibility to control
the change of topology in the solution. Adaptivity can also be applied easily according to local dynamics and features by
local mesh refinement. The algorithm can be implemented easily and efficiently since no PDE is involved on the under-
lying mesh.

This paper is organized as follows. In Section 2, we briefly review of the grid based particle method and introduce important
notions for the rest of the paper. In Section 3, we generalize this approach to motion of an closed curve in three dimensions. With
that, we explain how to apply the method to model motions of open curves and surfaces in Section 4. Various examples in both
two dimensions and three dimensions are given in Section 5 to demonstrate the performance of our algorithm.
2. Grid based particle method

For the convenience of readers, we give a brief summary of the grid based particle method for motions of a closed inter-
face in this section. For a complete and detailed description of the algorithm, we refer the readers to [17].

In [17], we represent the interface by meshless particles which are associated to an underlying Eulerian mesh. Each sam-
pling particle on the interface is chosen to be the closest point from each underlying grid point in a small neighborhood of
the interface. This one to one correspondence gives each particle an Eulerian reference during the evolution. The closest
point to a grid point, x and the corresponding shortest distance can be found in different ways depending on the form in
which the interface is given.

At the first step, we define an initial computational tube for active grid points and use their corresponding closest points
as the sampling particles for the interface. A grid point p is called active if its distance to the interface is smaller than a given
tube radius, c and we label the set containing all active grids C. To each of these active grid points, we associate the corre-
sponding closest point on the interface and denote this point by y. This particle is called the foot-point associated to this ac-
tive grid point. This link between the active grid points and its foot-points is kept during the evolution. Furthermore, we can
also compute and store certain Lagrangian information of the interface at the foot-points, including normal, curvature and
parametrization, which will be useful in various applications.

As a result of the interface sampling, the density of particles on the interface will be roughly inversely proportional to the
local grid size. This relation provides an easy adaptive approach in the current grid based particle method. In some regions
where one wants to resolve the interface better by putting more marker particles, one might simply locally refine the under-
lying Eulerian grid and add the new foot-points accordingly.



Fig. 1. Grid based particle method. From left to right: (a) initial representation/sampling, (b) after motion, (c) after re-sampling, (d) after activating new grid
points with their foot-points and (e) after inactivating grid points with their foot-points. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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This initial set-up is illustrated in Fig. 1. We plot the underlying mesh in solid line, all active grids using small circles and
their associated foot-points using squares. On the left most sub-figure, we show the initial sampling of the interface. To each
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grid point near the interface (blue circles), we associate a foot-point on the interface (red squares). The relationship of each of
these pairs is shown by a solid line link.

To track the motion of the interface, we move all the sampling particles according to a given motion law. This motion law
can be very general. Suppose the interface is moved under a velocity field u = u(y). One simply tracks the particles just like all
other particle-based tracking methods, which is simple and computationally efficient. In particular one can solve a set of or-
dinary differential equations using high order schemes which gives accurate location of the interface.

It should be noted that a foot-point y after motion may not be the closest point on the interface from its associated
active grid point p anymore. For example, Fig. 1(b) shows the location of all particles on the interface after the constant mo-
tion u ¼ ð1;1ÞT with a small time step. As we can see, these particles on the interface are not the closest point from these
active grid points to the interface anymore. More importantly, the motion may cause those original foot-points to become
unevenly distributed along the interface. This may introduce both stiffness, when particles are getting together and large
error, when particles are getting apart. To maintain a quasi-uniform distribution of particles, we need to resample the
interface by recomputing the foot-points and updating the set of active grid points ðCÞ during the evolution. During this
resampling process, we locally reconstruct the interface, which involves communications among different particles on the
interface. This local reconstruction also provides geometric and Lagrangian information at the recomputed foot-points on
the interface.

The key step in this process is a least square approximation of the interface using polynomials at each particle in a local
coordinate system, fðn0Þ?;n0gwith y as the origin, n0 is the normal vector associated to y before motion and ðn0Þ? is the tangent
vector, Fig. 2(a). Using this local reconstruction, we find the closest point from this active grid point to the local approximation
of the interface, Fig. 2(b). This gives the new foot-point location. Further, we can also compute and update any necessary geo-
metric and Lagrangian information, such as normal, curvature and also possibly an updated parametrization of the interface at
this new foot-point. When different pieces of interface get close, e.g. before merging or crossing, one can classify neighboring
particles from different pieces into different groups according to Lagrangian information, such as normal direction and/or
some parametrization of the particles. This will allow us to reconstruct different pieces without mixing. Due to the availability
of both Eulerian information, i.e., reference to the underlying mesh and Lagrangian information of particles, the meshless rep-
resentation allows us to detect collision of different interfaces and to control topological changes easily. For more details, we
refer interested readers to [17] for each of the above procedures.

To end this section, we summarize the algorithm and also give the computational complexity for modeling motions of a
plane curve in two dimensions. In the following we let m be the points used in the local reconstruction of the interface, which
can be treated as a small constant and n be the number of underlying grid points in each spacial dimension.
Fig. 2. (a) Definition of a local coordinates and (b) the way how we determine the new foot-point using a local least square reconstruction of the interface.
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Algorithm (Grid based particle method).

(1) Initialization (Fig. 1(a)) ðOðnÞÞ. Collect all grid points in a small neighborhood (computational tube) of the interface.
From each of these grid points, compute the closest point on the interface. We call these grid points active and their
corresponding particles on the interface foot-point.

(2) Motion (Fig. 1(b)) ðOðnÞÞ. Move all foot-points according to a given motion law.
(3) Re-sampling (Fig. 1(c)) ðOðmn log mÞÞ. For each active grid point, re-compute the closest point to the interface recon-

structed locally by those particles after the motion in step 2.
(4) Updating the computational tube (Fig. 1(d) and (e)) ðOðmn log mÞÞ. Activate any grid point with an active neighboring

grid point and find their corresponding foot-points. Then, inactivate grid points which are far away from the interface.
(5) Adaptivity. Locally refine/coarse the underlying mesh if necessary.
(6) Iteration. Repeat steps 2–5 until the final computational time.

The resampling step in the above algorithm consists of the following three main processes applied to each foot-point:
collecting foot-points in the neighborhood, reconstructing the interface locally and determining the new foot-point location.
The first process has the computational complexity of Oðm log mÞ since one has to first collect OðmÞ points and then sort
them according to the distance to the active grid point. To local reconstruct the interface, one has to solve the least square
system which has a computational complexity of OðmÞ. For problems in three dimensional space, for example, one has to
implement an iterative solver for finding the new foot-point using the local reconstruction. It is hard to estimate the
complexity, but we can still limit the number of iterations to Oðm log mÞ. If the iteration does not converge in Oðm log mÞ
iterations, one can simply deactivate the corresponding grid point. Numerically, since we usually have a good initial guess,
the iteration converges in only few iterations in practice. This gives the overall complexity for the resampling step
Oðmn log mÞ for OðnÞ foot-points. Therefore, the overall computational complexity for moving the interface for one time step
is Oðmn log mÞ.
3. Closed curves in 3D

As already discussed in [17] the grid based particle method can also model motions of codimension two objects easily and
efficiently. In this section, we give a more detailed description for closed curves in 3D which will be used in tracking the
boundary of open surfaces in next section. In the grid based particle method one needs local construction of interface for
sampling particles as well as computing geometric quantities. For codimension one interfaces, the normal and tangent plane
is used as the local coordinate system. The key idea is that in this local coordinate system, the interface can be represented as
a graph in the tangent plane and can be easily approximated by least square fitting a collection of neighboring particles on
the interface.

For a codimension two interface, such a curve in 3D, the representation is the same. We use meshless particles sampled
according to an underlying grid, e.g. particles that are closest points corresponding to grid points in the neighborhood of the
Fig. 3. Representation of the open surface and the boundary in the grid based particle method. Away from the boundary-point (the green sun-symbol), the
representation is the same as in [17]. Each active grid point (red diamonds) is associated to its closest point on the interface (red circles). Near the boundary-
point, each active grid point (blue triangles and green squares) is associated to its closest point (red circles or green sun-symbol) and also the closest
boundary-point (green sun-symbol). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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interface. However, the local reconstruction procedure is a little different. Since a curve is of one dimension, we can
parametrize it in the tangent direction locally. For instance, assume we have already collected a set of neighboring particles
yi; i ¼ 0;1;2 . . . around the particle y0 on the curve and its tangent vector t at y0. For local construction of the curve, we trans-
late y0 to the original and transform the local coordinates using the Householder reflector such that t becomes the (0,0,1)-
axis. By doing so, the curve in 3D can be expressed locally as a function of z, the third coordinate. Mathematically, we locally
represent the curve using ðxðzÞ; yðzÞ; zÞ. Next, we use least square fitting to obtain xðzÞ and yðzÞ from the collected particles,
respectively, using quadratic polynomials. We can compute the foot-point associated to an active grid point p ¼ ðp1; p2; p3Þ
expressed with respect to the local coordinates by minimizing
Fig. 4.
algorith
associa
referen
min
z
f½xðzÞ � p1�

2 þ ½yðzÞ � p2�
2 þ ½z� p3�

2g: ð1Þ
In the current implementation, since we are using local quadratic polynomials for both xðzÞ and yðzÞ, the minimizer z� can be
found explicitly by solving a cubic equation. Other Lagrangian information including the tangent vector, the normal and/or
bi-normal vectors, the global parametrization and etc. can be obtained using the local reconstruction ðxðzÞ; yðzÞ; zÞ and z�

accordingly.
4. Open curves and open surface

In this section, we will discuss how our algorithm models the motion of an open curve (in two dimensions) or an open
surface (in three dimensions). The main idea is to explicitly keep track of the motion of the end-points of an open curve or
the closed boundary of an open surface, and then to enforce this boundary condition in the local reconstruction and sampling
step.

4.1. Representation

As defined before, any grid point which is in a c-neighborhood of the interface is called an active grid point. In Fig. 3, we
demonstrate a typical scenario near an end-point of an open curve. Given an open curve, we first collect active grid points
which are within the c-neighborhood. Then, for each of these active grid points we find the corresponding closest points on
the open curve. In the figure, we label the active grid points differently (using red diamonds, blue triangles and green
squares) and their closest points differently (using red circle and green sun-symbol) to distinguish their roles.

Away from the boundary-point (green sun-symbol), the set-up is exactly the same as before. If an active grid point has a
distance greater than c away from the boundary (green sun-symbol), we simply project the grid point (red square) onto the
surface locally reconstructed by the least square fitting. This gives the associated foot-point (red circle) on the surface.

For a grid point within the c-neighborhood of the boundary, we assign it with two foot-points. One is again the closest
point from the grid point to the open surface, while the second one is the closest point from the active grid point to the closed
boundary and we will call this second foot-point the boundary-point. In two dimensions, the second foot-point is just the
end-point itself, as shown in Fig. 3. For three dimensions, the boundary-point is exactly the sampling point we obtained
in the previous section. There is no extra minimization process required to determine this second foot-point. Such a grid
point will be used to sample and track both the interface and its boundary in the framework of grid based particle method
in a consistent way. We will describe this further in the next subsection.
(a) In the original algorithm [17], any potential new foot-point (red triangle) will be rejected if x� R ½xmin; xmax� ¼ ½minðxjÞ;maxðxjÞ�. (b) In the new
m, we associate the new closest point to the closest boundary-point if the corresponding active grid point is close to the boundary. In this plot, we

te the active grid point (blue circle) to the particle corresponding to xmin (red triangle) assuming it is a boundary-point. (For interpretation of the
ces to colour in this figure legend, the reader is referred to the web version of this article.)
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Note that these two foot-points could be the same or could be different. In Fig. 3, we plot these special grid points using
blue triangles or green squares. Consider the blue triangles, one of their associated foot-points is still obtained by local least
square approximation of the interface, which is plotted using red circles. Since these blue triangle active grid points are with-
in c from the end point (green sun-symbol), their second foot-points are also activated which are the closest boundary-
points (the connectivity is plotted using a dotted line). Fig. 3 shows the case in two dimensions. For three dimensions, these
boundary-points are in general different among different grid points. For some other active grid points near the boundary,
the closest point on the open curve could just be the closest boundary-point itself. In this case, the two foot-points associated
to an active grid point coincide. In Fig. 3, we plot this type of active grid points using green squares and the connectivity
between the active grid points and their foot-points using a dashed-dotted line.

4.2. Motion and resampling

Now we discuss how our algorithm incorporates this boundary information in the evolution step and the resampling step.
As before, the motion phase of the algorithm is relatively straight-forward. We simply move all sampling points (including
both the closest points and the boundary-points) as in the usual Lagrangian type methods. The motion law of the closest
points can be very general. We can naturally deal with the motion by an external velocity field or geometrical motions such
as motion by the mean or the Gaussian curvature. The motion law imposed on boundary-points can be explicitly given or can
be determined by local geometry of the boundary/surface such as the curvature or the torsion, which can be easily computed
from local reconstruction of the boundary/surface as described in the previous section.

We separate the reconstruction and sampling of the boundary-points from that of the surface. For two dimensional cases,
there is no need to resample end-points of the open curve since they are just explicitly tracked points. For three dimensions,
we resample the boundary using only boundary-points as described in Section 3.

Away from the boundary, the resampling step follows the procedures in standard grid based particle method. However,
resampling of the open surface near the boundary requires more care since we need to take into account the boundary of the
open surface.

The local reconstruction phase of the algorithm is similar as before. For each of the active grid point p, we consider its
neighboring active grids and collect a set of their corresponding closest points and, if any, also a separate set of their
corresponding boundary-points. If p is close to the boundary of the open surface, its neighboring active grid point might
be assigned two foot-points which might or might not be the same (the blue triangles and the green squares in Fig. 3, respec-
tively). We will distinguish these two types of foot-points in this local reconstruction step.

If the set of boundary-points is empty, we will simply use the set of closest points for local reconstruction, as in the ori-
ginal algorithm in [17]. Otherwise, we will form a set of sampling points for local reconstruction using both the set of closest
points and also the set of boundary-points. These sampling points have to satisfy the following two conditions. The first one
is the same as what we have proposed in [17] that any two sampling points should be separated on the order of OðhÞ, where h
is the local mesh size. This removes redundancy in the sampling which may cause degeneracy in the local reconstruction.
The second constraint is that boundary-points in the sampling set should define at least parts of the boundary of eX, whereeX is the convex hull formed by the projection of the sampling points on the tangent plane. This condition is to enforce that
sampling particles are confined by the boundary of the open curve or surface and this is the first place where the boundary
information is incorporated in the local reconstruction.

In two dimensions, here is the way to construct this sampling set from both the closest points and the boundary-points.
The set of the sampling point starts with collection of a set of closest points that are well separated as in [17]. Then we go
Fig. 5. (a) In the original algorithm [17], any potential new foot-point (red triangle) will be rejected if ~x� R eX. (b) In the new algorithm, we associate the new
closest point to the closest boundary-point if the corresponding active grid point is close to the boundary. In this plot, we associate the active grid point
(blue circle) to the particle corresponding to the red triangle assuming that corresponds to the closest boundary-point. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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through the set of neighboring boundary-points. For each boundary-point, we check if it is OðhÞ away from all of the already
collected sampling points or not. If not, then we will reject that particular boundary-point and then repeat the procedure
with the next boundary-point. Otherwise, in the local coordinates system fðn0Þ?;n0g where we denote the boundary-point
by ðx̂; ŷÞ and the set of the accepted sampling points by ðxj; yjÞ, we check if x̂ 2 ½minðxjÞ;maxðxjÞ�. If not, then we will add this
boundary-point to the list of the sampling point. Otherwise, we will use this boundary-point to replace the sampling point
corresponding to either minðxjÞ or maxðxjÞ, whichever closer to x̂. If a boundary point is accepted it is involved in both the
local reconstruction and defining end points of the reconstruction interval.

Now, with these sampling points, we construct a local least square fitting and we denote it by y ¼ f ðxÞ. To determine the
new closest point, we minimize the distance from the grid point p to the function y ¼ f ðxÞ. If the minimum is attained at
x� 2 ½minðxiÞ;maxðxiÞ�, we follow the same procedure as in [17] and determine the new closest point ðx�; f ðx�ÞÞ, accordingly.
In the previous algorithm, we deactivated any grid point if this new foot-point leads to an extrapolation, i.e. if
x� R ½minðxiÞ;maxðxiÞ�, Fig. 4(a). For active points near the boundary, we again enforce the boundary information at this step
of the algorithm. We now go back and check if the set of boundary-points is non-empty, i.e. if any of the active grid points in
the neighborhood is of the blue triangle or the green square type as in Fig. 3. If so, we will assign x� to this boundary-point, for
example x� ¼ xmin as shown in Fig. 4(b). Of course, if the distance between the grid point p and the boundary point x� is larger
than c, this association will be removed. On the other hand, if none of the neighboring active grid points is associated to a
boundary-point, we will simply deactivate this active grid point as in [17].

For three dimensional cases, we follow a similar procedure. To determine the set of sampling points, we combine the set
of the closest points and the set of the boundary-points, if any. When we are adding a boundary-point to the set of the
sampling point, the more complicated step is to check if a boundary-point on the tangent plane is inside the convex hull
formed by the projection of all accepted sampling points. Assume we have collected a set of accepted sampling points
and translated them to the local coordinate system which aligns the normal with z-axis and the tangent plane with x� y
plane as was done in [17]. Denote ðxi; yiÞ to be the x� y coordinates of those collected sampling points. Let ðx̂; ŷÞ be the
projection of the boundary-point on the tangent plane. We propose the following Oðm log mÞ algorithm which efficiently
determines if ðx̂; ŷÞ lies inside the convex hull eX constructed by the set ðxi; yiÞ, in the x� y (tangent) plane, see Fig. 5(a). There
could be better (in the sense of the computational efficiency or the easiness in implementation) algorithm for the job. But
since it will not improve the overall complexity of the algorithm, we will not discuss in details here.

Algorithm. to check if ðx̂; ŷÞ 2 eX
(1) Compute the angle hi made between ðxi � x̂; yi � ŷÞ and the positive x-axis.
(2) Sort hi in an ascending order.
(3) If the absolute value of the difference between any two adjacent hi’s is great than p, the point ðx̂; ŷÞ lies outside eX.

Otherwise, ðx̂; ŷÞ lies inside the convex hull.
The proof of this algorithm is straight-forward. Without loss of generality, we assume ðx̂; ŷÞ– ðxi; yiÞ is the origin and hi’s
have already been sorted in the ascending order. If there exists I such that jhI � hI�1j > p, we rotate the ðx; yÞ-coordinates to
make ~hi 2 ð0;pÞ;8i. Denote ð~xi; ~yiÞ the coordinates of ðxi; yiÞ after the rotation. We have ~yi > 0 and therefore,
0 R eX ¼ ðx; yÞ ¼

P
iaið~xi; ~yiÞ;ai P 0;

P
iai ¼ 1

� �
, the convex hull constructed by ð~xi; ~yiÞ.
Fig. 6. Incorporating the boundary information in the resampling phase. For each active grid point in the resampling step, we summarize the procedure to
determine how we assign new closest point or deactivate the corresponding grid point.
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Again, if the boundary-point is at least OðhÞ away from all sampling points and ðx̂; ŷÞ R eX, we accept this particular bound-
ary-point as a sampling point. Otherwise, we will use this boundary-point to replace the sampling point corresponding to
one of the ðxi; yiÞ on the boundary of eX, whichever closest to ðx̂; ŷÞ. This particular sampling point can be found by first sorting
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Fig. 7. Convergence analysis using the L2 norm for the simple translation (circle and solid line), the rigid body rotation (star and dashed line) and the motion
by mean curvature (plus and dashed-dot line). The convergence rates for these motions are approximately 3, 2 and 2, respectively.
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Fig. 8. Rotation of an upper half circle using an underlining uniform mesh of resolution 1292. The second row shows the solution at the final time t ¼ p with
the exact endpoint locations plotted in red circle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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all sampling points on the tangent place according to the distance to ðx̂; ŷÞ in an ascending order and then determining the
first one on the boundary of eX.

The next step is to obtain the local reconstruction of the surface z ¼ f ðx; yÞ by least square fitting. Let x� ¼ ðx�; y�; f ðx�; y�ÞÞ
be the closest point of the active grid point p. We again use the above Oðm log mÞ algorithm to determine if ðx�; y�Þ lies inside
the convex hull eX constructed by the set ðxi; yiÞ; i ¼ 1; . . . ;m in the x� y (tangent) plane, see Fig. 5(a). If so, then we accept x�

and assign the corresponding point on the surface to be the new foot-point. Otherwise, we again check if the set of boundary-
points is non-empty, i.e. if any of them is of the blue triangle or the green square type as in Fig. 3. If so, we will associate it to
the closest point on the boundary of the open surface, Fig. 5(b). Otherwise, we will simply remove this particular active grid
point from the computational tube and will also delete the corresponding associated particle.

We have summarized the algorithm in the resampling phase in Fig. 6. All other steps in our algorithm will be the same as
described in [17]. We approximate any Lagrangian information associated to this particle using the local reconstruction of
the surface. For example, the normal vector at this new foot-point is approximated by the normal vector of the local recon-
struction at x�. The curvature and the global parametrization can also be updated accordingly.

5. Examples

Unless otherwise specified, we will be using the computational tube with radius c ¼ 1:1h, where h is the local grid size.
We use quadratic polynomials for the least square fitting in local reconstruction, which uses six particles in two dimensions
and 10 particles in three dimensions. The time integration is done using the total variation diminishing second order Runge–
Kutta (TVD-RK2) scheme with time step equals 0:75hmin, where hmin is the smallest grid size of the underlying mesh.

Since our sampling particles are unconnected on the interface, we simply plot the solution (interface location) using
unconnected dots which shows the foot-point locations. For some examples in 3D, to better visualize the solution, we con-
vert our computed solution to an implicit representation, i.e. a level set representation using
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and then plot the zero level set f/ ¼ 0g using the MATLAB functions isosurface and patch.
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5.1. Open curve

5.1.1. Simple translation and rigid body rotation
In the first example, we consider an upper half of a circle of radius 0.1 initially centered at (0.25,0.25) moving under a

simple translation ðu;vÞ ¼ ð1;1Þ. At time t ¼ 0:5, the half circle with the same radius will be centered at (0.75,0.75). We
do not have a theoretical estimates on the order of convergence, but numerical experiments show that the proposed method
has similar convergent rates as stated in [17]. For instance, for this simple translation motion, the error at t ¼ 0:5 converges
to zero like OðDx3Þ. Fig. 7 shows (log-plot) the convergence as we refine the underlying grid. For a fixed Dx, we define the
following L2-error made at all foot-points by
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The solid line shows log-plot of the least square fitting of the error in the form
EDx ¼ c1ðDxÞc2 ; ð4Þ
whose slope gives an approximation to c2 and the rate of convergence.
Next we consider the rigid body rotation of a half circle of radius 0.15. The velocity is given by
u ¼ 1� 2y;

v ¼ 2x� 1:
ð5Þ
The curve will rotate around the point (0.5,0.5) in a period of p. Solutions at t ¼ mp=5 for m ¼ 1; . . . ;5 are shown on the top
row in Fig. 8. On the second row, we consider the solution at the final time t ¼ p. The end-points of the open curve are
tracked explicitly using the TVD-RK2 scheme and are plotted using a red circle. As we can see from this solution, end-points
locations from our algorithm matches with the exact locations very well. Similar to the simple translation motion, we also
perform a convergence analysis, the stars and the dashed line in Fig. 7. The convergent rate is of OðDx2Þ, which is due to using
RK2 in the time discretization.
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. Motion of a single triple junction under the time-reversal vortex flow at t ¼ 0:25; 0:50; . . . ;1:25. The single triple junction consists of three open
ts. The solution is computed using an underlining uniform mesh of resolution 5132. The second row shows the solution at the final time t ¼ 1:5 with
ct endpoint locations plotted in red circle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
of this article.)



S. Leung, H. Zhao / Journal of Computational Physics 228 (2009) 7706–7728 7717
5.1.2. Motions of a triple junction
One potential application of the proposed algorithm is on motions of a triple junction. In this paper, we represent a triple

junction by three open segments with a single common open end-point at the middle of the junction. This single junction
point will be explicitly tracked as a boundary point we have discussed above.

Fig. 9 shows the simple rigid body rotation of a single triple junction at t ¼ p=5;2p=5; . . . ;p. The length of each arm of the
triple junction is 0.15 with angles between any two adjacent arms is 2p=3. The initial center of the triple junction is at
(0.5,0.75). Under the same rigid body flow as in the previous section, the object will rotate about (0.5,0.5) in a period of p.

We have also consider the following simple vortex flow [10,14,19] which acts as an important test case for various
numerical methods. It was originally proposed by Bell et al. [3] to test if a numerical method is able to resolve very thin fil-
aments. The velocity field is defined by the following stream function
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Following [18], we study the time-reversal version of the velocity field by multiplying it by cosðpt=TÞ. Fig. 10 shows the mo-
tion of the same triple junction as in the simple rigid body rotation for t ¼ 0:25;0:50; . . . ;1:25 and T ¼ 1:5 using an under-
lining uniform mesh of resolution 5132. At the final time t ¼ 1:5, i.e. second row in Fig. 10, the triple junction should have the
same shape as t ¼ 0.

5.1.3. Motion in the normal direction
A slightly more complicated example is the motion in the normal direction. We consider the inward normal motion of an

upper hemisphere of a circle with radius 0.35. Fig. 11 shows the solutions at t ¼ 0:5m for m ¼ 1; . . . ;5. The solution at the
final time are plotted on the second row. Like the previous example, we also show using red circles the location of the
end-points computed by explicitly tracking them using an ordinary differential equation (ODE) solver.

5.1.4. Motion by mean curvature
We next consider the motion by mean curvature of an upper half circle of radius 0.4 centered at ðxc; ycÞ ¼ ð0:5; 0:5Þ. We

solve the evolutions of these two interfaces up to t ¼ 0:08 using the time step restriction Dt ¼ 0:5Dx2. Away from the end-
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points of the open curve, the radius of the circle can be analytically calculated and it is given by rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:42 � 2t

p
. At the end-

points, on the other hand, the curvature is not well-defined. Instead, we explicitly impose the motion at the two-ends by
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